Home |
| Latest | About | Random
# Homework 1 Problem 3. a) Let $U\sim\text{unif}\{1,2,\ldots,n\}$. Compute $E(U^{2})$. Note $E(U^{2})=\sum_{k=1}^{n} k^{2} P(U=k)=\frac{1}{n}\sum_{k=1}^{n}k^{2}=\frac{(n+1)(2n+1)}{6}$. b) Since $Var(U)=E((U-EU)^{2})=E(U^{2}-2UEU+(EU)^{2})=E(U^{2})-(EU)^{2}$ So as $EU= \frac{1+2+\cdots+n}{n}=\frac{n+1}{2}$, we have $$ Var(U)=\frac{(n+1)(2n+1)}{6} - \left( \frac{n+1}{2} \right)^{2} = \frac{n^{2}-1}{12} $$ c) If $X$ is uniformly distributed in $\{a,a+1,\ldots,b\}$ with $a < b$, then $X = a-1 +U$, where $U\sim\text{unif}\{1,2,\ldots,b-a+1\}$ So $\displaystyle Var(X) = Var(U) = \frac{(b-a+1)^2 -1}{12}$. Problem 4. Roll two unbiased dice, let $Y$ be max, and let $Z$ be min. Assuming 6 sided? a) pmf for $Y$ and pmf for $Z$. $P(Y = k) = \frac{2k-1}{36}$. $P(Z = k) = \frac{12-(2k-1)}{36}$ Draw a picture. b) joint pmf of $Y$ and $Z$ :$$ \begin{array}{c|ccccc} Y \backslash Z & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & \frac{1}{36} & 0 & 0 & 0 & 0 & 0 \\ 2 & \frac{2}{36} & \frac{1}{36} & 0 & 0 & 0 & 0 \\ 3 & \frac{2}{36} & \frac{2}{36} & \frac{1}{36} & 0 & 0 & 0 \\ 4 & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{1}{36} & 0 & 0 \\ 5 & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{1}{36} & 0 \\ 6 & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{2}{36} & \frac{1}{36} \end{array} $$ c) check joint. Indeed, row sums corresponds to $P(Y=k)$, and column sum corresponds to $P(Z=k)$. Problem 5. A coin lands on heads with probability $p$. Let $Z$ be the total number of coin toss until you see a second head. a) Find $E(Z)$. Denote $X,Y\sim\text{i.i.d geom}(p)$, then $Z = X+Y$. Then $E(Z) = E(X+Y) = EX + EY$ by linearity of expectation, which gives $EZ=\frac{1}{p}+\frac{1}{p} = \frac{2}{p}$. b) Find $P(Z > 5)$. The event $Z > 5$ is equivalent to saying among the first five toss, there is at most one head. Hence $P(Z > 5) = (1-p)^{5} + 4(1-p)^{4}p$.